Large-Format, Transmission-Line-Coupled Kinetic Inductance Detector Arrays for HEP at Millimeter Wavelengths

Tom Cecil

Snowmass Community Summer Study July 19, 2022

Outline

For full white paper: https://arxiv.org/abs/2203.15902

- Introduction
- Science Opportunities
- Technical Requirements
- Enabling Technologies
- Future Developments

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Large-Format, Transmission-Line-Coupled Kinetic Inductance Detector Arrays for HEP at Millimeter Wavelengths

Peter S. Barry¹, Clarence. C. Chang^{1,2}, Sunil Golwala⁴, and Erik Shirokoff²

¹Argonne National Laboratory, Lemont, IL, USA ²University of Chicago, Chicago, IL, USA ³California Institute of Technology, Pasadena, CA, USA

March 31, 2022

Abstract

The kinetic inductance detector (KID) is a versatile and scalable detector technology with a wide range of applications. These superconducting detectors offer significant advantages: simple and robust fabrication, intrinsic multiplexing that will allow thousands of detectors to be read out with a single microwave line, and simple and low cost room temperature electronics. These strengths make KIDs especially attractive for HFD science via mm-wave cosmological studies. Examples of these potential cosmological observations include studying cosmic acceleration (Dark Energy) through measurements of the kinetic Sunyaev-Eddovich effect, perceion cosmology through ultra-deep measurements of small-scale CMB anisotropy, and mm-wave spectroogy through ultra-deep measurements of small-scale CMB anisotropy, and mm-wave seperconduction to any out the distribution of cosmological structure at the largest scale and highest of the composition of

1 Introduction

Mar 2022

Over the last decade, mm-wave cosmological observations have emerged as a powerful tool for constraining fundamental HEP phenomena. Central to this development has been the advancement of key superconducting mm-wave detector technologies. These developments have enabled ever larger CMB experiments including the upcoming 'Stage 4' cosmic microwave background experiment (CMB-54). Over the next decade, continued advancement of superconducting mm-wave detector technology will enable even more sensitive instruments that will advance our cosmological understanding in new directions by transforming multiple observables from the mm-wave sky (beyond) just the CMB) into precision

1

Mm-wave cosmological observations

- Powerful tool for constraining fundamental HEP phenomena
 - CMB temperature / polarization to search for signs of inflation
 - Kinetic Sunyaev-Zeldovich (kSZ) effect being used to constrain galaxy and cluster peculiar velocities
- Advances in superconducting mm-wave detector technology has been key to enabling science
 - Sensors have achieved background limited noise performance
 - Array size scaled from ~ 10² to ~ 10⁴
- Realizing the full potential of mm-wave observations will required focal plane arrays of $\sim 10^6$ 10^7 detectors

Science Opportunities

- Peculiar velocities via the kinetic Sunyaev-Zeldovich Effect (kSZ)
 - New method for constraining the dark energy equation of state and test for modification of GR
 - Complementary to other techniques and bands (e.g. X-ray temperature information)
- BAO and RSD via mm-wave Integral-Field Spectroscopy
 - Flux of dusty/molecular/atomic components of galaxies is roughly redshift independent at mm-wave -> mm-wave sky is dense with sources
 - Line intensity mapping extended to mm-wavelengths -> access to cosmological modes beyond the redshift reach of traditional optical / IR galaxy surveys ($z = \sim 0.5 10$)
 - Snowmass White paper: 2203.07258
- Dark Matter Science from Small-Scale CMB Polarization with CMB-HD
 - Use gravitational lensing to distinguish pure cold dark matter models
 - Test or rule out new light thermal particles at > 95% confidence level
 - Probe for axion dark matter in the ueV to meV mass range
 - Snowmass White paper: 2203.05728

Technical Requirements

- Imaging and Polarimetry Surveys
 - \circ Detector arrays of $\sim 10^6 10^7$
 - Spectral coverage from ~ 30 GHz to 420 GHz
- Spectroscopic Surveys
 - O Detector arrays of $\sim 10^7 10^9$
 - Increased detector density
- Improved multiplexing schemes
 - Current technology has reached limit of ~ 10³ detectors per 150mm wafer

Enabling technologies - Kinetic Inductance Detectors

- Essentially a superconducting resonator
- Advantages
 - Inherently multiplexable
 - Simplified fabrication
 - Readout electronics share development with quantum computers

Direct Absorbing KIDs

- KIDs serves as photon absorber, sensors, and readout
- Can be as simple as a single metal layer (often a few layers)
- Optical bandpass defined by waveguides, filters, etc. to limit detectors to single observing band
- To date, only facility-grade KID instruments (NIKA-2, MUSCAT, TolTec)

Figure 2: Examples of direct absorbing lumped-element KID architectures. **Left**) dual-polarisation Hilbert fractal Al absorber used by NIKA2 [46], **middle**) a polarimetric detector design made up of two single-polarisation detectors using TiN developed at NIST for Toltec [47], and **right**) Al for the SPT-4 instrument [48].

Microstrip-coupled KID

- Separate absorber and sensing functions
- Allows for multi-chroic pixels
- Benefits from recent advances in superconducting electronics and low-loss transmission lines

Figure 5: a) Schematic of the principle of operation of a mc-leKID. See text for details. b) Photograph of a prototype mc-leKID device, c) Predicted performance of the mc-leKID as a function of inductor geometry. d) preliminary measurement of optical response characterized with a cryogenic blackbody source as a function of load temperature.

Thermal KIDs

- Couple radiation via bolometric design
- Allows independent optimization of resonator geometry and optical coupling
 - Resonator does not need to electrically connect to optical circuitry
- Electro-thermal feedback to improve stability and increase dynamic range

Figure 6: mm-wave TKIDs fabricated at JPL. Figure adapted from [59, 60]

On-chip Spectroscopy

- Filterbank architecture extends multi-band imaging
- Each pixel is coupled to ~ 100 -1000 detectors
- Fully on-chip spectrometers
 provides pathway to focal planes
 with ~ 100s pixels and ~ 10⁵
 detectors -> KID based readout

Figure 7: Examples of state of the art on-chip, KID-based spectrometers: (A)DESHIMA (B) SuperSpec (C) Micro-Spec. (see text for references)

Future Developments

Single Pixel Optimization

- Fundamental sensitivity has been shown to be comparable to TES
- On-going work at low optical loading as expected at lower frequencies
- Materials development needed for detection at frequencies below ~ 90 GHz

Scaling and Cost reduction

- Readout is a major cost factor need to bring down cost/KID
- Long term goal of ~ \$1/KID (1-2 orders of magnitude reduction from current experiments)

Integrated performance

- Facility level instruments are significant investment requiring demonstrated performance
- Deployment of small-scale systems is needed to validate performance models for full end-to-end performance

Summary

- Mm-wave observations are a powerful tool for constraining many fundamental HEP phenomenon
- Strong heritage in detector technology development via CMB experiments
 - Advanced from ~100 detectors to ~ 500,000 detectors
- Future experiments will require larger detector counts, new detector technology
- Kinetic Inductance Detectors (KIDs) offer advantages for increasing detector count and density
 - Single pixel lab tests are encouraging
 - Small-scale field tests necessary to validate performance